A revision suggested for page 34.10, Geothermal Energy chapter, ASHRAE 2015 HVAC Applications handbook. |
[Text copied from energy-pe.com project report, ASHRAEGeothermalEnergy.pdf,]
Theodore B. Reinhart, P.E.
When ASHRAE published its 2017 Fundamentals handbook
in June 2017, the revised "Energy Resources" chapter corrected
technical errors relating to geothermal energy and heat pumps from previous
editions. Similar errors are in ASHRAE's 2015 HVAC Applications handbook.
Its next edition, the 2019 HVAC Applications handbook, is scheduled to
be published in June 2019. The corrections in the 2017 handbook got started
when I attended the meeting of the handbook subcommittee of Technical Committee
2.8 on June 26, 2016 at ASHRAE's June 2016 annual conference, and my copy of
the new handbook arrived on June 1, 2017. I was surprised to see the result and
tweeted,
"The 2017 ASHRAE Handbook of Fundamentals includes all my suggested
changes to Chapter 34 Energy Resources. #Geothermal #Ambient @ashraenews".
The next day I started a project to help ASHRAE's Technical Committee 6.8, which
has responsibility for revising the "Geothermal Energy" chapter for
the 2019 handbook. This project report describes:
- ASHRAE's important role in the energy use of buildings,
- Geothermal energy,
- Ground source heat pumps,
- How "geothermal" is used incorrectly to describe ground source heat pumps,
- Some examples of ASHRAE using "geothermal" to describe ground source heat pumps,
- How ASHRAE's technical errors matter,
- My revisions in the 2017 Fundamentals handbook, and
- Energy-PE's project to help ASHRAE avoid using "geothermal" to describe ground source heat pumps in its 2019 HVAC Applications handbook.
ASHRAE's important role in the
energy use of buildings
ASHRAE, formerly the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers, is an organization whose members
research, design, build, and operate the systems that control the temperature,
humidity, air quality, and comfort in buildings and the process loads in those
buildings. ASHRAE sponsors research and technical
conferences, publishes transactions, journals, handbooks, standards, and other
technical documents, and supports its regions and local chapters. At the society
level, there are dozens of committees, including technical (TC) and project (PC),
on which members serve voluntarily. Most TCs and PCs are responsible for at
least one handbook chapter or technical standard, including making periodic revisions
and reviewing public comments on those revisions.
Because of ASHRAE's skilled members and open revision
process (anyone can submit comments and propose revisions to ASHRAE handbooks
and standards), some of its publications are treated similarly to model
building codes published by other non-governmental organizations. ASHRAE's standard
90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings,"
is specified
by federal law as the energy efficiency standard for the design and construction
of all federal buildings within its scope. As described at the link, federal
law requires that the U.S. Department of Energy (DOE) determine whether each
new revision of ASHRAE's standard 90.1 saves energy compared to the previous.
When DOE determines that it does and publishes that finding in the Federal
Register, the new ASHRAE standard 90.1 becomes the new federal regulation without
public comment or possibility of revision, which would normally be done before
a final federal rulemaking. ASHRAE's SSPC 90.1 does the public revision process
before DOE begins its evaluation. In
addition, because many ASHRAE standards relate to the safety and performance of
building systems, they do not need to be included in local, state, or federal
law, and designers do not need to be ASHRAE members, to be responsible for designing
in compliance with other ASHRAE standards, for example ASHRAE's standard 62.1
"Ventilation for Acceptable Indoor Air Quality."
Geothermal Energy
Geothermal energy describes thermal energy sources within
the Earth, collectively resulting in a relatively tiny average outward energy
flow, with distinct causes unrelated to solar or ocean tidal power at the
surface. Geothermal energy adds heat to the millions-of-years-long processes of
transforming organic deposits into fossil fuels. In the Earth's crust, heat is
generated by the natural fission (decay) of radioactive elements. The mantle is
hotter than the crust, and the core is hotter than the mantle, resulting in a
net heat flow outward from the mantle up through the crust. While natural radioactive
decay may still be present in the mantle and the core, most of the heat from
below the crust is the slow cooling of the core from the much higher
temperature when the Earth formed over four billion years ago, still making its
way out through the thin insulation of the lithosphere. The mantle transfers heat from the core to the
crust by convection and conduction. The two main sources of geothermal energy
are the heat transfer from hotter regions below the crust and the heat of
radioactive decay in the crust, resulting in a mean
continental geothermal power flux of 0.062 W/m2 and a mean oceanic
flux of 0.101 W/m2. The global mean is about 0.09 W/m2
and the total geothermal power of the Earth at the surface is about 44
Terawatts (TW).
The geothermal power flux at the Earth's surface is insignificant
compared
to the mean absorbed solar power and atmospheric infrared radiation (IR). If
geothermal power was the only source heating the Earth's surface (no Sun or
atmospheric IR) the surface temperature would be near 35 K based on the global
mean geothermal power flux. Instead, because of solar radiation and the
atmosphere with its natural "greenhouse effect," the mean surface
temperature of the Earth is about 288 K (15 C) resulting in a mean radiated
heat loss of about 390 W/m2, over 4000 times the geothermal power
flux. Geothermal energy has no effect on the surface or near-surface
temperature of the Earth, which is a result of the Sun, the "greenhouse effect,"
and the heat capacity/thermal diffusivity of the soil, water, and rocks near
the Earth's surface. Infrared radiation from the surface of the Earth is nearly
200,000 TW.
The primary sources of data on temperatures and thermal
properties of the Earth's crust are measurements of the geothermal gradient
within continental boreholes and ocean sediment cores, and laboratory analysis
of the thermal properties of core samples. For continental temperatures near
the surface, diurnal oscillations in ground temperature, due to diurnal oscillations
in air temperature, are observed within the top 1 to 2 meters, the amplitude
decreasing with depth. Annual oscillations in ground temperature, due to annual
oscillations in air temperature, are observed to a depth of 19 to 38 meters,
the amplitude also decreasing with depth. Below this depth the annual oscillations
at the surface are no longer noticeable and the undisturbed ground temperature is
about equal to the local mean air temperature, the midpoint of both the diurnal
and annual oscillations.
Without geothermal energy, the mean surface temperature
would determine the temperature within the Earth. At some depth below where
annual oscillations in ground temperature disappear, climate differences would
also eventually decrease to zero, resulting in a uniform deep Earth temperature
of 288 K (15 C). Instead, with geothermal energy, below the depth where diurnal
and annual temperature oscillations go to zero, the mean continental geothermal
gradient of 20 to 30 C/km becomes measurable. For example, for a local climate
temperature of 288 K, the temperature at 100 meters depth due to climate temperature
would be 288 K. With a local geothermal gradient of 20 C/km, an additional
contribution from geothermal energy flux would be 2 K, for a total temperature
of 290 K. This is below the depth of the ground loops of most ground source
heat pump systems.
Ground source heat pumps
A ground source heat pump (GSHP) is a heat pump which uses
the ground as its low-temperature reservoir (heat source) and uses a heating
load as its high-temperature reservoir (heat sink). Heat pumps are often reversible,
meaning the cycle can be switched from heating to cooling, using a cooling load
as its heat source and the ground as its heat sink. Using the ground, rather
than air, as a heat pump source/sink for heating/cooling can improve efficiency
because local ground temperature (below 19 meters) is relatively constant and about
the local mean air temperature (the local climate temperature), in contrast to
the outdoor air temperature, which changes with the weather and experiences diurnal
and annual hot and cold extremes.
Being decoupled from weather extremes, a GSHP's higher
installed cost can often be justified by its higher efficiency, with resulting
lower energy cost and/or lower peak power demand, when compared to an air
source heat pump (ASHP). Building heating and cooling loads follow the weather,
meaning heating loads increase when the outdoor air gets cooler and cooling
loads increase when the outdoor air gets hotter. The highest heating and
cooling loads occur during the lowest and highest outdoor air temperatures,
respectively, when ASHP heating and cooling capacities and efficiencies are at their
lowest. A GSHP can use the ground, groundwater, or surface water at a
relatively constant temperature because those source/sinks have a high heat
capacity which dampens and time shifts the effects of diurnal and annual
outdoor air temperature oscillations over days (below 1 meter) and years (below
19 meters). For most climates, GSHPs are among the most efficient, and lowest
peak demand, space heating and cooling systems compared to other systems using
the same source of work (for example, electricity).
A GSHP is usually a packaged, space conditioning, reversible,
all-electric heat pump connected to the ground by a buried, closed-loop,
polyethylene piping system of supply and return headers connected to one, or
usually more, U-tubes, dropped and grouted into uncased vertical wells spaced about
7 meters apart and drilled to a depth of 30
to 120 meters. This formula estimates the pipe friction heating power:
Watts = 746 x GPM x
deltaP / 3960.
For example, one U-tube made of nominal 3/4-inch diameter
pipe, serving a one ton cooling load, has a flow of 3 GPM. For a U-tube 75 meters
deep (150 meters of pipe), the deltaP is 8 feet of water column. Using the
formula, the frictional heating of the heat transfer fluid in one U-tube is 4.52
Watts. For a grid with 49 m2 per well, the average frictional heat
gain per square meter of well field is 0.092 W/m2. This formula is
based on a loop filled with water and neglects any heat from the circulating pump
or the pressure drop through the heat pump evaporator, so it is a low estimate.
Usually the ground loop contains a mixture of water and anti-freeze and its higher
viscosity will result in a greater deltaP and more frictional heating power.
Coefficient of performance (COP) is a measure of efficiency
for a heat pump for a given set of operating conditions, the ratio of useful
heating energy supplied divided by useful energy used (for example,
electricity), and GSHP manufacturers publish performance data for GSHPs. For
example, the WaterFurnace
model NS036 (ECM blower option, p.35) with an entering water temperature (EWT)
of 60 F at 9 GPM and an entering air temperature of 70 F, has a heating
capacity (HC) of 36,200 BTU/H, an electric input of 2030 W, heat extracted (HE)
of 29,200 BTU/H, and a COP of 5.23. Interpolation with data for 70 F EWT
implies increasing the EWT by 1 K (1.8 F) to
61.8 F would increase HC, HE, kW, and COP values to 36,900 BTU/H, 29,900
BTU/H, 2.04 kW, and 5.31, implying a 1 K average increase in ambient ground
temperature from the geothermal gradient might make a 0.07, or 1.5%,
improvement in the COP.
The reason for the discrepancy between this predicted
performance improvement (1.5%) from an average 1 K geothermal gradient boost
over the depth of the ground loop and what is really happening in a closed-loop
system is because elevated ground temperature from the geothermal gradient near
the surface is a result of the ground being undisturbed by thermal effects
other than climate and geothermal power flux over thousands of years. The heat
extracted by the NS036 (3-ton nominal) GSHP at 60 F is 29,200 BTU/H (8560 W).
For a 49 m2 per ton well field, the average annual power flux of the
GSHP heat extracted by this single-speed heat pump is 13 W/m2, 1.5
orders of magnitude less than the climate power flux, but over two orders of
magnitude greater than the geothermal power flux. The GSHP ground flux includes
a load factor correction for 2000 hours in heating mode and 1000 in cooling
mode. In cooling mode the NS036 rejects 41,900 BTU/H (12,280 W) to the ground
loop field. This is an annual average power flux of about 10 W/m2 of
surface area into the ground and also two orders of magnitude greater than the
geothermal power flux. The GSHP annual cycle of extracting heat in the winter
and rejecting heat in the summer is so large it obliterates any effect
geothermal power flux had on steady-state undisturbed temperatures in the
ground loop field. Local undisturbed temperature at a depth below annual oscillations
is the integration of thousands of years of the local climate boundary
condition at the surface, and geothermal energy no longer affects ground temperature
when a GSHP begins disturbing it on diurnal and annual timescales with its
powerful heating and cooling loads.
How "geothermal" is
used incorrectly to describe ground source heat pumps
The word "geothermal" is used incorrectly to
describe ground source heat pumps, ignoring one or both of these two facts,
1. Geothermal power has no effect
on local ambient ground temperature.
2. A heat pump's low-temperature
reservoir isn't useful energy.
Ignoring either fact leads to false claims. The first is
making the false claim that the Earth's geothermal power flux affects local
ground (climate) temperature, a widespread confusion. The second is making the
false claim that a heat pump's low-temperature reservoir, like the work done by
its compressor, is a useful energy resource by itself, a direct contradiction
of the second law of thermodynamics. Here's further detail on fact 1, fact 2, and
reservoirs.
Fact 1: The undisturbed temperature of a GSHP ground loop field
is climate dependent. The effect of geothermal power is insignificant. Joseph
Fourier determined this 200 years ago:
For a globe made of iron, a rate of
increase of a thirtieth of a degree per meter
would yield only a quarter of a
centessimal degree of excess surface temperature
at the present. This elevation is
in direct ratio to the conductivity of the material
of which the envelope is formed,
all other things being equal. Thus, the surface
temperature excess of the actual Earth
caused by the interior heat source is very
small; it is certainly less than a
thirtieth of a centessimal degree. It should be
noted that this last conclusion
applies regardless of the supposition which one
may make about the nature of the
internal heat source, whether it be regarded
as local or universal, constant or
variable.
...
Though the effect of the interior
heat is no longer perceptible at the surface of the Earth, the total quantity
of this heat which dissipates in a given amount of time, such as a year or a
century, is measurable, and we have determined it; that which traverses one
square meter of surface during a century and expands into celestial space could
melt a column of ice having this square meter as its base, and a height of
about 3m.
("On the Temperatures of the
Terrestrial Sphere and Interplanetary Space," Joseph Fourier, 1827, translation
by R. T. Pierrehumbert, 2004, p.14-15)
Here is Pierrehumbert's footnote to the second quoted paragraph
(which is separated by six paragraphs from the first, before the ellipsis):
Equivalent to 318 mW/m2,
which is 3-4 times modern estimates of geothermal heat flux. As Fourier
implies, the overestimate arises from using the conductivity of iron.
Geothermal power flux (W/m2) in localities with typical
geothermal gradients is the same order of magnitude as the example of ground
loop pipe friction power, 0.092 W/m2, calculated under the previous heading,
"Ground source heat pumps," (does not account for ground loop pump
cycling).
Fact 2: A heat pump is not a heat engine. A heat engine is
heated by a useful high-temperature reservoir, converts some of that heat to
work, and rejects the remaining heat to a low-temperature reservoir. A heat
pump's low-temperature heat source cannot be a useful energy resource because
it is colder than the useful heat sink temperature made by the compressor; if the
heat source temperature is useful relative to the heating load served by the heat
sink, a heat pump and its work resource will not be needed. The energy a heat
pump extracts from the ambient environment is not useful; the ambient
low-temperature heat naturally transfers through the ground into the lower temperature
ground loop. The compressor uses work to chill its ground loop, then pressurizes
and heats that extracted cold energy from the ground up to a useful temperature
in the condenser, there rejecting the energy from the cold ground mixed with the
hot energy from the compressor to its heat sink and the heating load. All
thermodynamics textbooks confirm this in discussions of heat engines, heat
pumps, and the second law of thermodynamics (for example,
Thermodynamics, Joseph H. Keenan, 1941, p.63). If the local geothermal
gradient had a useful effect on GSHP heating output and efficiency, it would
also have a significant negative effect on GSHP cooling output and efficiency.
"Reservoir" has both thermodynamic and general
definitions as differentiated by Keenan (1941 footnote, p.59), "The term
reservoir is used here to mean a heat source or a heat sink of uniform
temperature. It should not be inferred from the more general definition of the
term that heat can be stored. When heat is received from a reservoir the
internal energy of the system which constitutes the reservoir is reduced."
Some examples of ASHRAE using
"geothermal" to describe ground source heat pumps
The shocks of oil price increases in the 1970s improved the
prospects for alternative energy resources because higher prices for
conventional energy resources improves the economics for alternative energy
projects. The Geothermal Resources Council
(GRC) was founded in 1971; its mission is to, "advance geothermal
development through education, outreach, and dissemination of research."
In early 1979 it hosted, "A symposium of geothermal energy and its direct
uses in the Eastern United States," under DOE contract number ET-78-G-03-2118.
GRC published the
symposium papers in Special Report No. 5, dated April 1979. This was two
months after the Iranian revolution, one month after the Three Mile Island
disaster, at the beginnings of the 1979 oil panic with its spring and summer of
long lines at gasoline stations, and when everybody started pumping their own
gasoline except in New Jersey and Oregon.
The theme of GRC's 1979 symposium was based on theory and
data reporting that while accessible geothermal resources useful for generating
electricity (that is, hot enough to power a heat engine) are rare, accessible
deep aquifers with a capacity and temperature useful for process or space
heating loads are less rare, with "accessible deep aquifers" meaning
"conventional energy costs are high enough to justify drilling and pumping
costs." Most of the papers describe research and projects relating to the
direct use of aquifers which are at a useful temperature as a result of their
depth, age, and the local geothermal gradient. Several papers describe the
direct use of hydrothermal resources with useful temperatures at or near the
surface, the main subject of ASHRAE's 1982 "Geothermal Energy"
chapter. Two papers describe research on generating electricity from hot deep
rock resources. One paper, "Utilization of Geothermal Energy with an
Emphasis on Heat Pumps," (R. C. Niess, p.73-80), presents economic comparisons
for heating process water using three basic system options:
1. Drill through a normal
geothermal gradient deep enough to get to an aquifer with a useful temperature
(for example, 7700 feet, 170 F).
2. Drill into a shallower aquifer with
an elevated, but not useful temperature (for example, 3000 feet, 100 F), but
deep enough that a water-to-water, non-reversible, heat pump can heat the
process water to a useful temperature.
3. Drill the same depth as 2., but
use a boiler to heat the process water to a useful temperature.
One paper reports the estimated effects on efficiency,
capacity, and resource use load factor for hot well water from useful aquifers (about
80 C) to power a lithium bromide-water absorption cycle originally modified for
use with solar heated hot water. In the application the paper describes, it
could be called a geothermal powered chiller, or a geothermal air conditioner, differentiating
it from both gas and electric powered air conditioners.
>> ASHRAE
published papers presented at its 1980 semiannual meeting in Transactions,
1980, volume 86 part 1, including "High Temperature Heat Pumps Can
Accelerate the Use of Geothermal Energy," (R. C Niess, p.755-762). This
paper references the Niess 1979 GRC symposium paper and reports on a similar
economic comparison, using either a heat pump or an oil-fired boiler to heat
process water from the not-hot-enough
aquifer temperature to the necessary process temperature. The option of
drilling deep enough to get to a useful temperature is not compared (p.756),
"The cost of drilling wells to these depths could be prohibitive
considering the present (and even the 10-yr projected) cost of conventional
energy sources to heat process water and to supply space heating."
>> ASHRAE
published its first edition of "Geothermal Energy" as chapter 56 in the
1982 Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. In the endnotes are four papers from the 1979 GRC symposium part
of a total of 56 papers by some of the same authors and others, describing the
direct use of geothermal energy; neither the 1979 GRC Niess paper nor the 1980
ASHRAE transactions Niess paper are referenced. The chapter uses "heat
pump" four times when describing how to use geothermal energy at
temperatures greater than 15 C and less than 90 C (p.56.2, 56.8, 56.17). It
uses "heat pump" one more time as an example of how a cleanable heat
exchanger made of special materials can be used to isolate a heat pump from corrosion
and scaling by the geothermal fluids from shallow sources or deep aquifers
which were the focus of the chapter (p.56.12). One paragraph in this first
edition of the "Geothermal Energy" chapter describes the nature of
both shallow and deep geothermal fluids as being localized, limited resources,
and the maintenance or renewal of these resources by the local geothermal power
flux as insignificant compared to the power and timescales of human use of energy
resources (p.56.3):
Life of the Resource
Although the radioactive decay that
appears to be the ultimate source of geothermal energy continues, and can be
expected to continue, for many thousands of years, geothermal energy in a
specific locality is generally not renewable. Only in areas that are
volcanically active would a particular resource be expected to be renewed. The
energy to be mined, from what are now considered geothermal resources, was
built up over a period of many millions of years and could not be restored at
the rate at which it would be withdrawn in any economic application. As a
result, each resource must be developed with a certain life of the development
in mind. The usual procedure is to expand the area that is developed as
additional capacity is required and/or initial energy production rates start to
drop off.
In its December 1982 Bulletin the GRC published "Geothermal
heat-pump systems are competing today against conventional fuels," by R.
C. Niess (p.9-14). The introductory paragraphs end with (p.9), "The cost
of drilling wells to these depths could be prohibitive considering the present
(and even the ten-year projected) cost of conventional energy sources." The
paper presents case studies of three installations:
- A northern plains municipal power agency office building with an open loop well water source heat pump heating and cooling system, with reinjection of well water (55 F pumped, 50 F reinjected). It also has a bypass feature to avoid using the heat pump as a chiller when well water temperature is cold enough to handle cooling loads on its own.
- The temperature of water from 1800-foot-deep wells supplying a western city varies from 65 F to 86 F. A county courthouse converted from an oil- and gas-fired boiler to an electric water-to-water industrial heat pump. In the winter, the heat pump chills city water before returning it to the community water mains. In the summer the heat pump cycle is reversed, cooling the courthouse and returning heated water to the city's mains.
- A northern plains school campus central plant serving nine buildings converted from an oil-fired boiler to industrial electric heat pumps with 1000 foot deep wells producing 935 GPM at 75 F for a low-temperature reservoir and a 790 GPM heating water distribution system at temperatures up to 190 F as its heat sink. The system configuration is described as a "heat-pump cascade system" at design conditions, when both "heat pumps extract 10 F in cooling the 935 gpm of geothermal water" to produce 7.7 million BTU/H of heating capacity at a temperature of 190 F (p.13). The system can idle one heat pump and reset the heating water supply temperature to 130 F (p.14) when the heating load drops below the need for 190 F at the various campus building terminal units. The system was not designed for changeover to provide chilled water in the cooling season.
>> ASHRAE
published a revision of "Applied Heat Pump Systems" as chapter 10 in
the 1984 Systems handbook, assigned to TC 9.4, Applied Heat
Recovery/Heat Pump Systems. The revision added this paragraph to the subheading
Heat Sources and Sinks, Water (p.10.4):
The recent interest in geothermal
energy has led to the identification of many geothermal energy sources with
temperatures compatible with heat pump systems. They range from the typical
shallow well temperatures mentioned above to temperatures where direct use for
heating is possible. When using these temperatures which are higher than
typical ground water temperatures, special attention should be given to
designing the system for the proper fluid temperature drop. This is necessary
since increasing the temperature drop decreases the fluid flow requirements for
a specified heating rate. When the available temperature is high enough for
direct use, but the available water resource flow is insufficient to satisfy
the heating, load, the heat pump can be used to meet the load by achieving a
greater drop in the resource temperature than the temperature necessary for
direct use. Geothermal system designs are presented in more detail in Chapter
56 of the 1982 Applications Volume.
This text addition has endnotes for the Niess 1979 GRC symposium
paper, a May 1980 DOE report "Heat pumps for geothermal applications:
availability and performance" (G. M. Reistad and P. Means), and the Niess 1982
GRC Bulletin paper. ASHRAE's false claim, "... the identification of many
geothermal energy sources with temperatures compatible with heat pump systems.
They range from the typical shallow well temperatures mentioned above ..."
confuses "many geothermal energy sources" with the climate effects on
"typical shallow well temperatures," in a section about heat pump
sources and sinks. ASHRAE's false claim ignores fact 1,"geothermal power
has no effect on local ambient ground temperature." In the next subheading,
Heat Sources and Sinks, Earth, ASHRAE describes ground source heat pumps and lists
endnotes for twelve references from the 1940s and 1950s, plus two from 1964,
without using the word "geothermal."
>> ASHRAE published
a revision of "Geothermal Energy" as chapter 45 in the 1987 HVAC
Systems and Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The revision included the Life of the Resource paragraph, which
replaced "generally not renewable" with "limited," and
deleted text describing hot water from deep aquifers as "The energy to be
mined, from what are now considered geothermal resources, was built up over a
period of many millions of years and could not be restored at the rate at which
it would be withdrawn in any economic application." (p.45.3)
Life of the Resource
Although the radioactive decay that
appears to be the ultimate source of geothermal energy continues, geothermal
energy in a specific locality is limited. The limiting factor is usually
thermal water, the medium used to transfer the energy from the rocks to the
surface. If production rates of thermal water exceed natural recharge rates,
water levels can decline and the resource should be developed with a reservoir
management plan that includes injection wells to maintain reservoir pressure.
Reservoir life is difficult to determine and involves expensive reservoir
engineering techniques. The usual procedure is to expand the area to be
developed to stages, monitoring the water levels in wells, then apply proper
reservoir management methods as additional capacity is required and/or initial
energy production rates start to decline.
>> ASHRAE
published its first edition of "Energy Resources" as chapter 31 in the
1991 HVAC Applications handbook, assigned to TC 4.8, Energy Resources. A
list of energy resource forms includes the text, "Solar energy and wind
energy are also available at most sites, and geothermal energy (earth heat) is
available at some." A list of nondepletable sources of energy includes:
"Earth heat (geothermal)" and "Atmosphere or large body of water
(as used by the heat pump)" (p.31.1). The "Earth heat
(geothermal)" likely refers to the limited useful energy resource form
listed on the same page. ASHRAE's false claim that "Atmosphere or large
body of water (as used by the heat pump)" is a nondepletable source of
energy like hydropower, solar, wind, tidal, and ocean thermal ignores fact 2, "a
heat pump's low-temperature reservoir isn't useful energy."
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 29 in the 1991
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The revised subsection,
Equipment and Materials, Downhole heat exchangers (p.29.12) begins with:
The downhole heat exchanger (DHE)
consists of an arrangement of pipes or tubes suspended in a wellbore. A
secondary fluid circulates from the users system through the exchanger and back
to the system in a closed loop. The primary advantage of a DHE is that only
heat is extracted from (and with heat pumps, heat is rejected to) the earth
eliminating the need for disposal of spent fluids.
The text, "and with heat pumps, heat is rejected to,"
makes the false claim that a geothermal downhole heat exchanger can double as
the heat sink for a heat pump, which ignores this alternate wording of fact 2,
"a useful geothermal resource is a poor high-temperature reservoir for a
heat pump." This 1991 revision also adds an example of an artesian well
distribution system, with a temperature of 190 F at 300 GPM, designed to heat a
fixed number of customers. The return water from these highest temperature
customers then circulates to the municipal pool. The water rejected from the
pool is used as the low-temperature reservoir for a loop heat pump system at a
school. This cascade design results in the production from the hydrothermal
resource being rejected at near ambient temperature, maximizing the temperature
drop for the large fixed cost of the designed supply flow and temperature
(p.29.16).
>> ASHRAE
published a revision of "Energy Resources" as chapter 31 in the 1995
HVAC Applications handbook, assigned to TC 1.10, Energy Resources. Revisions
include changing part of the list of energy resource forms from one sentence in
1991 (p.31.1), "Solar energy and wind energy are also available at most
sites, and geothermal energy (earth heat) is available at some." into two
sentences (p.31.1):
Solar energy and wind energy are
also available at most sites, as is low-level geothermal energy (energy source
for heat pumps). Direct-use (high-temperature) geothermal energy is available
at some.
ASHRAE's false claim " ... available at most sites, as
is low-level geothermal energy" ignores fact 1, "geothermal power has
no effect on local ambient ground temperature." ASHRAE's false claim that
"low-level geothermal energy (energy source for heat pumps)" is an
energy resource form ignores fact 2, "a heat pump's low-temperature
reservoir isn't useful energy." This revision essentially added the ground
to the list started when the 1991 edition falsely claimed "Atmosphere or
large body of water (as used by the heat pump)" as a nondepletable source
of energy.
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 29 in the 1995
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The revised chapter included " ... and ground-source heat
pump applications (generally < 90 F)." in its first sentence as one of
three categories of geothermal resources (29.1). References to heat pumps were
also added to the Resource (renamed Resources) section of the geothermal
chapter. The “low temperature” geothermal energy classification, which had been
defined as 15°C to 90°C, had its lower bound removed; previously warm and hot
springs were considered low temperature geothermal resources, this change added
cold springs to the classification, a false claim ignoring facts 1 and 2 (29.2).
The remainder of the chapter is split into two headings: Direct Use Systems including
content from the 1991 chapter (p.29.3-29.14) and Ground-Source Heat Pump
Systems. Under Direct Use Systems, The Life of the Resource subsection is
replaced by the Resource Life subsection (p.29.4):
Resource Life
The life of the resource has a
direct bearing on the economic viability of a particular geothermal
application. There is little experience on which to base projections of
resource life for heavily developed geothermal resources. However, resources
can readily be developed in a manner that will allow useful lives of 30 to 50
years and greater. In some heavily developed direct-use areas, major systems
have been in operation for many years. For example, the Boise Warm Springs
Water District system (a district heating system servicing some 240 residential
users) has been in continuous operation since 1892.
Under Ground-Source Heat Pump Systems, a new section (p.29.14-29.24),
the first paragraph under the Terminology subheading states (p.29.14):
The term ground-source heat pump
(GSHP) is applied to a variety of systems that use the ground, groundwater, and
surface water as a heat source and sink. Included under the general term are
ground-coupled (GCHP), groundwater (GWHP), and surface water (SWHP) heat pump
systems. Many parallel terms exist [e.g., geothermal heat pump (GHPs), earth
energy systems, and ground-source (GS) systems) and are used to meet a variety
of marketing or institutional needs.
The new GSHP heading includes new application guidance for
ground-coupled heat pump systems, local ground water temperatures, and
closed-loop-to-ground heat transfer sizing calculations for the non-steady-state
annual climate and heat pump system effects on a ground field for vertical,
horizontal, and spiral loop designs. Local geothermal gradient isn't an input
for these calculations (p.29.16-29.17).
Detailing examples of ASHRAE using "geothermal" to
describe ground source heat pumps in handbooks or other publications from 1996
through 2014 is beyond the scope of this project. The handbook revisions of the
"Geothermal Energy" and "Energy Resources" chapters retain
the errors added in 1991 and 1995. Further reading of the GSHP sections in the
"Geothermal Energy" chapter revisions over the decades reveals the societal
benefits ASHRAE and others have contributed through the expanded knowledge and
improvement of the design and installation of GSHPs, which are among the most
efficient, and lowest peak demand, all-electric, space heating and cooling
systems. Here are lists of the two sets of intervening chapters, grouped by
chapter.
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 31 in the 1999
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The ground source heat pump heading expands (p.31.14-31.25).
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 32 in the 2003
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The ground source heat pump heading expands (p.32.11-32.27).
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 32 in the 2007
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The ground source heat pump heading expands (p.32.9-32.29).
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 34 in the 2011
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The ground source heat pump heading expands (p.34.9-34.32).
ASHRAE did not publish a revision of " Energy Resources
" in the 1999 HVAC Applications handbook. A revision of the
"Thermal Storage" chapter is moved up to its place as chapter 33.
>> ASHRAE
published a revision of "Energy Resources" as chapter 17 in the 2001
Fundamentals handbook, assigned to TC 1.10, Energy Resources, retaining the
fact 1 and fact 2 errors added in 1991 and 1995.
>> ASHRAE
published a revision of "Energy Resources" as chapter 17 in the 2005
Fundamentals handbook, assigned to TC 2.8, Energy Resources, retaining the fact
1 and fact 2 errors added in 1991 and 1995.
>> ASHRAE
published a revision of "Energy Resources" as chapter 34 in the 2009
Fundamentals handbook, assigned to TC 2.8, Energy Resources, retaining the fact
1 and fact 2 errors added in 1991 and 1995.
>> ASHRAE
published a revision of "Energy Resources" as chapter 34 in the 2013
Fundamentals handbook, assigned to TC 2.8, Energy Resources, retaining the fact
1 and fact 2 errors added in 1991 and 1995.
>> ASHRAE
published a revision of "Geothermal Energy" as chapter 34 in the 2015
HVAC Applications handbook, assigned to TC 6.8, Geothermal Energy
Utilization. The ground source heat pump heading expands (p.34.10-34.41).
Producing and delivering draft revisions to correct errors in this chapter and
the 2017 Composite Index were major tasks completed early in Energy-PE's
project to help ASHRAE publish a 2019 handbook describing ground source heat
pumps without false "geothermal" claims in either the
"Geothermal Energy" chapter or the 2019 Composite Index.
>> ASHRAE
published a revision of "Applied Heat Pump and Heat Recovery Systems"
as chapter 9 in the 2016 HVAC Systems and Equipment handbook, assigned
to TC 6.8, Geothermal Heat Pump and Energy Recovery Applications. This revision
of the chapter uses "geothermal" in the text four times in the last
section, 3.4 Heat Pumps In District Heating And Cooling Systems.
>> ASHRAE
published a revision of "Energy Resources" as chapter 34 in the 2017
Fundamentals handbook, assigned to TC 2.8, Building Environmental Impacts
and Sustainability, correcting decades of false claims ignoring fact 1 and fact
2. This revision removed “low-level geothermal energy (an energy source for
heat pumps)” as an energy resource form (p.34.1), removed “earth heat” as an
ambiguous synonym for geothermal energy (twice, p.34.2), “atmosphere or large
body of water” as a renewable resource energy resource used by heat pumps
(34.2), and removed "high-temperature" as qualifier for
"geothermal energy, which is not universally available, ..." (34.1).
>> ASHRAE Journal,
(p.16-27) published the article "Geothermal Conversion for Of a Commercial
Office" in its June 2017 issue describing a conversion from natural gas
boilers and furnaces with electric air source condensing units to all-electric
horizontal ground loop GSHP heating and cooling. The word "geothermal"
should not have been in this article, on the front cover of the Journal, or in
the Journal editor's glowing introduction to the article.
How ASHRAE's technical errors
matter
This report has described ASHRAE's important role in the
energy use of buildings. Since the 1980s ASHRAE has produced various technical
publications which use the word "geothermal" to describe the ground
source heat pump. From 1991 until 2017 ASHRAE's "Energy Resources"
chapter confused the low-temperature reservoirs of air and water source heat
pumps with useful nondepletable and renewable energy resources.
Describing GSHPs as "geothermal" confuses people. Confused
people repeat or create false claims about "geothermal" and GSHPs.
Because of ASHRAE's important role in energy it is likely its continued
repetition of false claims about GSHPs and "geothermal" reinforces this
confusion. DOE also spreads the false claim that GSHPs use geothermal and renewable
energy through its marketing and Energy Information Agency (EIA) reporting. For
example, here is how DOE answers its own FAQ question 3: Where
Is Geothermal Energy Available?
Answer: Hydrothermal resources -
reservoirs of steam or hot water - are available primarily in the western
states, Alaska, and Hawaii. However, Earth energy can be tapped almost anywhere
with geothermal heat pumps ..."
At the end of this webpage's false claim (which ignores fact
1) the words "heat pumps" link to DOE's "Geothermal
Heat Pumps" webpage where DOE makes more two false claims (which ignore
fact 2):
"The benefit of ground source
heat pumps is they concentrate naturally existing heat, rather than by
producing heat through the combustion of fossil fuels."
"The geothermal heat pump
takes advantage of this by transferring heat stored in the earth or in ground
water into a building during the winter, ..."
The heat pump is producing it temperature and heat with
electricity, not the naturally cold ground, and it almost certainly is using
electricity from fossil fuels. Heat is not stored in the ground, or anywhere. Thermal
energy is constantly flowing into, through, and out of the ground through diurnal
and annual changes in solar radiation, infrared radiation, convection, conduction,
precipitation, and evaporation. The GSHP uses electricity to extract energy
from the environment at a temperature which is unaffected by the geothermal power
flux. See also, "The
False Claims of Ground Source Heat Pumps" for a report of EIA's false
claims about the direct use of geothermal energy.
Some buyers of GSHPs for existing buildings are switching
their fuel from direct use, for example fuel oil, to indirect fuel use of the grid
supplying their incremental electric heating load; some buyers are upgrading
from less efficient all-electric heating and cooling systems, and are
decremental loads from the grid. As long as there are fossil fuel generators
supplying electricity to the grid, any incremental electric load delays the
retirement of the worst one, and is responsible for that incremental fuel use,
and any decremental electric load hastens the retirement of the worst generator
and avoids that decremental fuel use. From an electric load perspective, a GSHP
can be either load building or load shaving for heating or cooling loads,
depending on an application's original and retrofitted system loads and the
energy resources used. Electric ground source heat pumps are not geothermal or
renewable. They are an all-electric heating and cooling load.
Using its thermal renewable energy certificate (REC) program,
New
Hampshire law takes money from rate payers to purchase thermal RECs, credited
to GSHP owners for the low-temperature energy extracted from their backyards. The
Clean Energy States Alliance reports on New Hampshire and other states with
thermal REC programs, many of which include solar (New Hampshire is one) and
real geothermal, in "Renewable
Thermal In State Renewable Portfolio Standards," updated July 2018.
Other examples of the confusion and false claims made for
GSHPs are detailed in some project task descriptions below. ASHRAE's errors
matter because while making false claims from its position of authority, it is reinforcing
the confusion and other consequences from those false claims.
My revisions in the 2017
Fundamentals handbook
The "Energy Resources" chapter first edition, in
the 1991 HVAC Applications handbook, was written by TC 4.8, Energy
Resources. Responsibility for revisions was assigned to TC 1.10, Energy
Resources, for the 1995 HVAC Applications and 2001 Fundamentals
handbooks. Responsibility changed to TC 2.8, Building Environmental Impacts and
Sustainability, for revisions in the 2005 Fundamentals, 2009
Fundamentals, and 2013 Fundamentals. In June 2016 ASHRAE held its
annual conference in Saint Louis, Missouri, so my attendance didn't require
travel, only commuting.
I went to the handbook subcommittee meeting of TC 2.8 on June
26, 2016. This was the last in-real-life meeting before the deadline for the
final revision of the "Energy Resources" chapter for the 2017 Fundamentals
handbook. I brought copies of the first three pages of the 2013 edition of the
chapter with lineouts and inserts removing “low-level geothermal energy (an
energy source for heat pumps)” as an energy resource form, “earth heat” as an
ambiguous synonym for geothermal energy, and “atmosphere or large body of
water” as a renewable energy resource used by heat pumps.
Two days later I attended the full committee meeting of TC 6.8,
Geothermal Heat Pump and Energy Recovery Applications. My notes of the handbook
subcommittee chair's report on the draft revision of the "Geothermal
Energy" chapter for the 2019 HVAC Applications handbook are,
"moving GSHP to front of Chapter, Direct use pushed to back." I signed
in on the attendance
sheet and didn't say anything.
I don't know what happened to my three pages of revisions I handed
to someone two days earlier at the TC 2.8 "Energy Resources" chapter subcommittee
meeting. I had also signed in on the attendance sheet there and initiated a
discussion of how the Earth is insulation and thermal mass and how geothermal
energy makes almost zero contribution to local ground temperature, which
depends on the climate. In August 2016 I was on the list of recipients of an
email to the subcommittee from the chair with a draft of the revised "Energy
Resources" chapter and a request for final review. My printed revisions
I'd left at the meeting weren't there so I edited the file and emailed it back.
In October 2016 I received another email from the subcommittee chair asking for
clarification on which revisions I'd added to the file. I replied to the email,
started a project for the accumulating work papers, and waited until June 1,
2017 when my brand new ASHRAE handbook arrived and all my recommended revisions
had been printed.
Energy-PE's project to help
ASHRAE avoid using "geothermal" to describe ground source heat pumps
in its 2019 HVAC Applications handbook
Energy-PE, LLC, is my sole proprietor business founded about
three months after my retirement from Laclede Gas Company, the local natural
gas distribution utility in Saint Louis, Missouri (Laclede hired Energy-PE in
2013 to consolidate legacy rate calculation spreadsheets into a new spreadsheet
and that project was completed in 2014). Participation in ASHRAE committee
activities is by individuals who usually are there with some support from their
employer. Energy-PE did not reimburse travel expenses, but budgeted 100%
unbillable hours for this project.
Unlike my 2017 ASHRAE handbook project, this 2019 handbook project
has been a work project from the start, with a projected two year span. The
2017 handbook project started in 2016 with an email from the TC 2.8 handbook
subcommittee more than three months after I'd attended its meeting in Saint
Louis, while this 2019 project started in 2017 with my receipt of the 2017
handbook. The rest of this report is a chronology (dates in parentheses) of major
project tasks and some ancillary tasks:
- Received (June 1, 2017) 2017 Fundamentals.
- Started (June 2, 2017) project folder for 2019 handbook.
- Contacted (June 5-8, 2017) local energy professionals and discussed my project scope and immediate tasks to help ASHRAE. They agreed my first task was to email the chair of TC 6.8.
- Emailed (June 8, 2017) TC 6.8 chair describing the revisions to "Energy Resources" chapter and their effect on the "Geothermal Energy" chapter revisions already underway for the 2019 handbook. A chronology of, and text similar or identical to, many of my communications with ASHRAE for this project are on Energy-PE's project webpage.
- Received (June 9, 2017) a response from TC 6.8 chair with cc: to the "Geothermal Resources" chapter subcommittee chair starting with:
Thank you for your comments. The roughly one page introduction to
geothermal energy was (to my understanding) added in order to provide some
background about what is, and is not, to be addressed in the chapter. I have
not thoroughly reviewed the 2017 Handbook as I have not yet received my copy.
However, assuming the Energy
Resources adequately covers the same material, we can certainly look at simply
referencing that chapter and streamlining our chapter.
- Emailed (June 13, 2017) TC 1.3 chair about typo (p.4.3) in "Heat Transfer," chapter 4 in the 2017 Fundamentals. The equation for heat transfer rate from a hollow sphere, in Table 2, One-Dimensional Conduction Shape Factors, has a plus sign instead of a minus sign between the two radius terms in the denominator. ASHRAE published this correction in General Handbook Corrections - I-P Edition, July 20, 2017 ( p.A.1), "p. 4.3, Table 2, 1st equation for hollow sphere. In the denominator, change the + to a -."
- Completed (June 23, 2017) my hand edited draft revisions of printed copies of 2015 "Geothermal Energy" chapter and 2017 "Composite Index." Emailed scans to the TC 6.8 chair and handbook subcommittee chair on that Friday morning before ASHRAE's annual meeting began in Long Beach, California. My transmittal email explained I would not be in Long Beach, but I'd be available by phone for both the upcoming Sunday handbook subcommittee and Tuesday full committee meetings. No one called or responded to this email.
- Emailed (June 23, 2017) letter to the ASHRAE Journal editor about false geothermal claims.
- Observed (August 21, 2017) a total eclipse of the Sun at Energy-PE world headquarters.
- Having received no feedback from TC 6.8, I submitted (August 26, 2017) a similar comment on ASHRAE's handbook comment webpage and received confirmation from ASHRAE's handbook manager, September 12, 2017.
- Uploaded (September 7, 2017) the first edition of Energy-PE's "Geothermal Energy" webpage to provide easy access to my comments and tweeted the link. Reply emailed (September 13, 2017) to the ASHRAE handbook manager with the link to this webpage and easy access to the scans of my draft revisions I'd emailed the TC 6.8 chairs, since I had found no option to upload them with my August 2016 online comment, which the handbook manager's email was acknowledging.
- Replied (October 5, 2017) to a tweet about proposals in Alberta to circulate water through abandoned oil wells to provide space heating. I selected a quote from the article to which it linked and plugged my own webpage:
"Banks draws a distinction
between ground source heat pumps in common use and true geothermal
energy."
#geothermal
http://energy-pe.com/geothermal.htm
On October 6, 2017 @_Geothermal_ followed me Twitter. I don't know who or what this is.
- Replied (November 9, 2017) to a tweet by the author of a citylab.com article "Welcome to the Steam-Powered Suburbs." That headline appears under a photo of Hellisheidi geothermal electric power plant in Iceland and the article describes planned housing developments with GSHP systems.
On November 10, 2017 @GRC2001 followed me on Twitter. This
is the Geothermal Resources Council.
- Began (November 13, 2017) adding #NotGeothermal to tweets where its 15 characters could fit.
- Learned (November 17, 2017) and tweeted about Ginsberg's Theorem.
- Posted (November 22, 2017) "The False Claims of Ground Source Heat Pumps" based on notes, references, expanded and updated research of EIA and other source data, new analysis methods, and review of recent false claims.
On December 1, 2017, the Geothermal Resources Council blogged
a link to my post, "The
False Claims of Ground Source Heat Pumps" with this comment:
In the following article a
professional engineer weighs in on the problem of differentiating between geothermal
energy and heat pump technologies. What do you think? Join the conversation in
the comments below.
Ted Reinhart, Professional
Engineer, Energy-PE, LLC, University of Missouri-Columbia
The GRC post
promoting my post was deleted by December 4, 2017 after I'd already posted (December
3, 2017) a thankful comment which also clarified " ... Neither myself nor
Energy-PE, LLC are affiliated with the University of Missouri-Columbia, other
than I received my M.S. degree there 30+ years ago."
- Learned (December 6, 2017) about geothermal climate science denial and tweeted (December 30, 2017) about it with a link to Skeptical Science's webpage, "Heat from the Earth's interior does not control climate," by Andy Skuce, posted on September 17, 2011.
- Downloaded (January 18, 2018) TC 6.8 full committee draft minutes from the June 2017 Long Beach ASHRAE meeting. Included in the handbook subcommittee chair's report was the item "Ted Reinhart email on term ‘geothermal’. We will crisp up our terminology, but not make the major division that he suggests. [Chair] and [subcommittee chair] will make a reply to Ted." Neither the "crisp up our terminology" nor the "reply to Ted" tasks were completed.
- Quote-tweeted (January 18, 2018) Rupert Darwall's geothermal climate science denial quote-tweet of a climate scientist after seeing @_Geothermal_'s retweet of his trolling. I added it as a reply without comment to my earlier tweet about geothermal climate science denial.
- Travelled (January 21, 2018) to ASHRAE's 2018 winter conference in Chicago, Illinois, visited the ASHRAE bookstore, and attended TC and PC meetings. The task requiring the trip was to participate in the TC 6.8 handbook subcommittee meeting and discuss my draft edits from June 2017. The subcommittee chair participated by phone because of federal government shutdown travel restrictions. I handed copies of my draft revisions from June 2017 to the subcommittee member with a cell phone on speaker. The recollection of Chicago meeting attendees, who had listened to discussion at the Long Beach meeting, was that going ahead with my revisions would confuse people. No one in the room defended false claims that the ground is at ambient temperature because of geothermal energy. No one in the room defended false claims that ground source heat pumps extract useful energy from the ground.
- Emailed (January 23, 2018) the TC 6.8 chair, subcommittee chair, and two others whose email addresses I received at the Sunday handbook meeting, with these two draft sentences to add to the end of the 3.1 Terminology paragraph (p.34.10), "Geothermal energy has no effect on local ground temperature or climate. A ground source heat pump uses neither geothermal nor renewable energy unless the work used by the heat pump is from a geothermal or renewable energy resource." I received no response.
- Received (February 5, 2018) neither a call during the Tuesday, January 23, 2018 TC 6.8 full committee meeting nor a response to my email sent just before the meeting, so I emailed the TC 6.8 chair requesting, "a summary of any discussion, votes, or other actions relating to the Geothermal Energy chapter which took place at the TC 6.8 meeting on Tuesday, January 23, 2018 during the ASHRAE winter conference in Chicago. If draft minutes are available for either the subcommittee or committee meetings, please send those. Also, please arrange for me to have read access to the online draft of the geothermal energy chapter so I can review changes being proposed for the 2019 HVAC Applications handbook." The TC 6.8 chair replied February 6, 2018, "Ted, You will receive the information sent to the full TC."
- Replied (February 6, 2018) to my own tweet with a link to Rupert's desmogblog.com profile, and noting that Rupert's geothermal climate science denial is usually marginalized, even by climate science deniers. Rupert hit my bait.
- Emailed (February 7, 2018) the TC 6.8 handbook subcommittee chair asking for access to the latest draft revision of the "Geothermal Energy" chapter, which they sent as a word document. It still used "geothermal" to describe GSHPs in all the same places. I notified (February 8, 2018) the subcommittee chair that the errors I'd identified in June 2017 were still there. The subcommittee chair's reply:
I chose not to change the
terminology after our TC voted “no” to changing the words at the June 2017 Long
Beach CA ASHRAE conference. There were many changes for me to manage for
the handbook, and many “last minute” change requests that occupied a lot of my time.
Changing the terminology requires more TC support than I had, and more time
than I had. I understand your frustration with the process and the time
it takes to resolve the issue, but it’s just not something I can address at
this time. I will pass the information and your suggested changes on to the
next chapter chair.
- Posted (February 11, 2018) "Order of Magnitude, A Fish Story" about Rupert Darwall's geothermal climate science denial.
- Tweeted (February 12, 2018) "Geothermal is like the Clarence Beeks of ground source heat pumps (GSHPs not F.C.O.J.), who then tried to do climate denial too. GSHPs are #NotGeothermal. F.C.O.J is frozen concentrated orange juice." It's a reference to the movie "Trading Places" in which Clarence Beeks is an overly-confident hoodlum hired by the Dukes.
- Found (February 20, 2018) an @Advanced_Energy tweet after @_Geothermal_ made a similar tweet including a link to and graphic from an Advanced Energy Center Blog post "A Closer Look at Geothermal Systems" about Brooklyn Botanic Garden’s GSHP system. The blog post's false claims about the system ignore fact 1 and fact 2, for example:
As geothermal capacity expands in the United States to meet increasing
demand for renewables, we examine the impact of these installations through the
example of the Brooklyn Botanic Garden in New York. While much of the nation’s
geothermal capacity is located on the west coast, this infographic highlights
the exciting possibilities of geothermal in a dense urban environment.
- I replied (February 20, 2018) to the @Advanced_Energy tweet:
The @bklynbotanic 60 ton heating and cooling system described is a ground
source heat pump system. It uses neither geothermal nor renewable energy unless
its electric power is from geothermal or renewable generation resources.
#NotGeothermal #NotRenewable
- Reviewed (February 23, 2018) the AEC2018 program, the last agenda item is "Heat Pumps: Utilities, Emerging Business Models and Enabling R&D."
- Tweeted (March 1, 2018) criticism of the false claims in CBS News article "Geothermal heat is slowly gaining steam in homes," 7 tweets.
- Tweeted (March 1-2, 2018) about the Earth's geothermal power and showed how small it is. Followed up with a tweet about the internal energy of Jupiter's moon Europa and how the surface flux from Europa's internal power source does effect its surface temperature.
- Reply tweeted (March 5, 2018) to a tweet by Reforming the Energy Vision, Governor Andrew M. Cuomo’s comprehensive energy strategy for New York (@Rev4NY):
The #Geothermal Clean Energy
Challenge is a $3.8M initiative to encourage ground-source #HeatPump systems in
government buildings, healthcare facilities & schools across NY.
Successful applicants will receive
free analysis & unlock access to funding http://on.ny.gov/2nxxZ7Q"
The tweet had an image including
NYDERDA's logo, a home with a GSHP, heading text "In The Wintertime,"
and body text "The earth is warmer than your home, so heat from the ground
is transferred to the house through the water pipe system to warm you up"
a false claim ignoring fact 2.
- Started (March 6, 2018) a tweet folder for Dandelion.
- Tweeted (March 6, 2018) about my hashtags. #NotGeothermal #NotRenewable #NotUtilityIndependent #NotSteam #NotLikeAPowerPlant #TotallyElectric (turns out this one was already popular) #TheEarthIsNotWarmerThanYourHome #NotACauseOfGlobalWarming.
- Trolled (March 6, 2018) the Union of Concerned Scientists by tweeting a link to its geothermal webpage and then mockingly quoting some text from the UCS's first paragraph by writing "Ground source heat pumps don't use geothermal energy because it's not 'the dirt in our backyards,' ..." Here's the first paragraph of, "How Geothermal Energy Works":
Heat from the earth can be used as
an energy source in many ways, from large and complex power stations to small
and relatively simple pumping systems. This heat energy, known as geothermal
energy, can be found almost anywhere—as far away as remote deep wells in Indonesia
and as close as the dirt in our backyards.
The scientists' webpage ignores
fact 1 and fact 2. I went on and on with four replies to myself.
- Replied (March 6, 2018) to a tweet linking to a greentechmedia.com article about Dandelion with the comment "Curious to see where Dandelion goes with making direct use #geothermal more accessible in residential applications." My reply said: "@DandelionEnergy is marketing ground source heat pumps and this acquisition will have no impact on direct use of geothermal energy. The Sun and atmospheric infrared radiation maintain local ground temperatures. Geothermal energy is 1000+ times smaller." This got helpful replies from the original tweeter who seems to have learned geology in college. I was last taught geology in elementary school.
- Created (May 8, 2018) @NotGeothermal twitter account to avoid cluttering @energy_pe with #NotGeothermal after this project. While looking for a profile page banner image, I found @ENERGY's "Get Current" coloring book which makes the false claim "GEOTHERMAL We can use energy from the earth to heat and cool our homes" (p.7) for a drawing of a home with a ground loop and a chimney, in an all-electric coloring book. I have a difficult time understanding how people could become more confused than that, as TC 6.8 claims would happen if ASHRAE corrects its own technical errors with its 2019 HVAC Applications handbook edition.
- Tweeted (May 9, 2018) about 200th anniversary of industrial geothermal use in Larderello, Italy.
- Replied (May 30, 2018) to a tweet linking to a Bloomberg.com article about Dandelion with the comment "The #geothermal industry spans a wide spectrum from deep electricity generation to residential heat pumps like Dandelion and all have an important part in our energy future." My reply said:
Ground source heat pumps don't use
geothermal energy. "Geothermal heat pump" is a lie.
1. The local ambient ground
temperature of a heat pump field is climate dependent. It is #NotGeothermal
2. Heat pumps are not heat
engines. Heat pump reservoirs are not useful energy resources.
This got a reply from the original
tweeter, which lead to another. Bob Wyman of Dandelion jumped in and replied to
my reply twice, for example:
The US government calls these
things "geothermal heat pumps." While those in the industry are well
aware that they are more solar thermal than geothermal, we gave up on fighting
the name game to focus on more important problems like deployment.
"While those in the industry
are well aware that they are more solar thermal than geothermal ..." is
sort of understanding fact 1 while ignoring fact 2.
- Tweeted (June 1, 2018) the cat and refrigerator model of heat pumps, 3 tweets, which includes a screenshot of Bob's reply, my response, and Bob's last reply of that subthread. I paraphrased what Bob's two replies together say to me: "those in the industry are well aware that many consider ambient ground temperature to be partly of geothermal origin."
- Replied (June 22, 2018) to a tweet linking to a Treehugger article "Many smart people are saying Electrify Everything! I wonder if instead of the fancy heat pumps and tech we should Reduce Demand!" Here's my reply which included a quote tweet of my June 1 tweet:
Great article. I had a recent
exchange with @bobwyman of @DandelionEnergy. I was surprised by his candor that
most people making money repeating this lie know they are lying, but only lie
because @ENERGY makes them. I hear the same excuse from #MyASHRAE.
Bob Wyman replied with "You
lie ..." June 24, 2018. I replied with a question about the depth of
Dandelion's ground loops, then added a reply to myself since Bob didn't.
- Emailed (June 24, 2018) the TC 6.8 chair and handbook subcommittee chair after not receiving a call during the "Geothermal Energy" chapter subcommittee meeting at the June 2018 annual conference in Houston, Texas. I asked if there had been any committee communications since February, as I had received none, and I asked the TC 6.8 chair to call me during the handbook subcommittee chair's report at the full committee meeting. The chair replied that my request was unreasonable and I wouldn't be called. My next reply (June 26, 2018) included the following text and I asked the chair to read my full reply at the meeting:
... A year ago, the 2017 Fundamentals
handbook corrected the lies which were in the original Energy Resources chapter
in the 1991 Applications handbook. The 2019 Geothermal Energy chapter revision
is TC 6.08's opportunity to fix the lies added to the Geothermal Energy chapter
in 1995. The term "geothermal heat pump" is a lie to confuse
potential customers into thinking they will be using renewable energy
resources. ASHRAE will not be confusing people by correcting this, it will be
sharing its superior knowledge. ASHRAE will be knowingly repeating a lie if it
publishes this again in 2019. Claiming the U.S. Department of Energy made it
lie does not sound like a very good defense.
The chair's reply began, "Your
tone and accusations are inappropriate and unappreciated. My assumptions were that you were signing up
as a corresponding member to be engaged with the committee. Your comments were
discussed during the subcommittee. I
have stated to you that I work and communicate through those who engage through
the appropriate channels. ..." I tweeted about
this reply ahead of the full TC 6.8 meeting in Houston, "I emailed this
message to the chair ... I don't think he is going to read it. #MyASHRAE"
with a screenshot
of part of my email to the chair.
- Researched (June 26, 2018) thermal renewable energy certificates ("Renewable Thermal In State Renewable Portfolio Standards," Clean Energy States Alliance). I tweeted twice about the New Hampshire scheme. GSHP owners there are getting more thermal RECs for chilling their backyards than they would need to purchase solar or wind RECs for the electricity powering their heat pump. A comprehensive review of thermal RECs for GSHPs was beyond the scope of this project.
- Researched (June 28, 2018) the direct use of geothermal energy in Sweden ("World Energy Resources Geothermal 2016," World Energy Council, p.46), because it had been mentioned in the CBSNews article "Geothermal heat is slowly gaining steam in homes." It turns out Sweden's direct use of geothermal energy is almost all GSHPs, and I tweeted about it, 5 tweets. A comprehensive review of false claims about GSHPs in other countries was beyond the scope of this project.
The 2019 HVAC Applications handbook is scheduled to
be published and available in the ASHRAE Bookstore beginning
in June 2019. The scope of this project was helping ASHRAE correct its false
claims about geothermal energy and heat pumps with its revision of the "Geothermal
Energy" chapter from the 2015 HVAC Applications handbook.
October 14, 2018
Saint Louis, Missouri
Saint Louis, Missouri